Your location:  Home  >  Bearing News  >  World Bearing News
<<  Back

Novel Steel Grade Resists Fatigue as Life Becomes Harder for Bearings

Resource from:  https://www.powertransmission.com Likes:245
Aug 13,2025

1.png

Finding new steel grades with robust fatigue properties is becoming increasingly important for heavy vehicles. A key driver is the accelerating trend towards electrification that imposes additional loads on the powertrain. Specifically, the electrification of large goods vehicles requires improved fatigue properties under both high cycle fatigue (HCF) and very high cycle fatigue (VHCF). There are three main contributing factors. First, electric motors in large goods vehicles operate typically at a much wider range of rpm than internal combustion engines and second, they generate increased torque compared with cars. This requires superior fatigue strength to ensure an adequate life for powertrain components. Third, the substantial weight of the traction batteries, crucial for long range, exerts considerable additional stress on the vehicle’s structure, and especially bearings. It is possible to improve fatigue resistance by increasing the thickness of material used in critical components. However, this imposes a weight penalty that would impact the load-carrying capacity of a vehicle already challenged by the weight of its traction batteries. This is creating interest in novel steel grades that can deliver enhanced fatigue properties with no increase in component size. This is where Ovako’s Hybrid Steel 60 shows particular promise. Fatigue failure generally results from the accumulation of microplastic deformation under repeated cyclic conditions. The term microplastic refers to the microscopically small areas of the component where the material is subject to plastic deformation while the bulk retains its elastic properties. This type of failure affects the service life of a wide range of machine components, such as gears, rolling bearings, and camshafts. Rolling bearings often operate under elastohydrodynamic lubrication (EHL). This is a regime where significant elastic deformation of the surfaces takes place, with a considerable effect on the shape and thickness of the lubricant film. This leads to alternating contact stresses within a small area that can cause subsurface damage known as rolling contact fatigue (RCF). The result is microstructural changes in the contact areas that ultimately manifest as fatigue damage.

(https://www.powertransmission.com)
【CBCC News Statement】
1.The news above mentioned with detailed source are from internet.We are trying our best to assure they are accurate ,timely and safe so as to let bearing users and sellers read more related info.However, it doesn't mean we agree with any point of view referred in above contents and we are not responsible for the authenticity. If you want to publish the news,please note the source and you will be legally responsible for the news published.
2.All news edited and translated by us are specially noted the source"CBCC".
3.For investors,please be cautious for all news.We don't bear any damage brought by late and inaccurate news.
4.If the news we published involves copyright of yours,just let us know.

BRIEF INTRODUCTION

Cnbearing is the No.1 bearing inquiry system and information service in China, dedicated to helping all bearing users and sellers throughout the world.

Cnbearing is supported by China National Bearing Industry Association, whose operation online is charged by China Bearing Unisun Tech. Co., Ltd.

China Bearing Unisun Tech. Co., Ltd owns all the rights. Since 2000, over 3,000 companies have been registered and enjoyed the company' s complete skillful service, which ranking many aspects in bearing industry at home and abroad with the most authority practical devices in China.